
Delphi by Design

Introduction
Past Articles
Source Code

One-Step ActiveX

by Ray Konopka
February/March 1998, Vol. 8, No. 6 -- Download Source Code:

Getting from VCL to ActiveX can be as little as one step—if
you’re careful and understand the limitations of the ActiveX
component architecture.

Over the past three installments of “Delphi by Design,” the focus has been on
in Delphi 3. Along the way, we have seen how interfaces play an important role
particular, we have seen how they are used to manipulate objects, how they
abilities of automation servers, and how Windows itself relies on them. All of this
serves as a foundation for the topic I’ll be covering in this article and the next—converting
native Delphi components into ActiveX controls.

Not Just for Delphi Anymore

Although both Delphi 2 and 3 can use ActiveX controls, the principal
architecture in Delphi has always been the Visual Component Library (VCL). In
is so integrated into Delphi that they are virtually indistinguishable. As a result,
more power and flexibility when native Delphi components are used.

A testament to the power of the VCL is Borland’s new C++ Builder, which also
as its underlying architecture. In fact, C++ Builder uses native Delphi components
without any code changes. You simply recompile the Delphi component unit
Builder to install it on the palette.

Because C++ Builder is based on the same VCL as Delphi, it is possible to create
Builder components using C++ instead of Object Pascal—the process is
creating a native Delphi component. However, I do not recommend this approach.
C++ Builder can use Delphi components, Delphi cannot use C++ Builder
Therefore, create your custom components in Delphi if you want to use
environments. Besides, it saves me from writing a C++ version of my Developing
Delphi 3 Components book.

In Delphi 3, we now have the ability to convert our native Delphi components
ActiveX controls that can be used in a wide variety of products, including
Builder, Internet Explorer, Visual Basic, Visual C++, and IntraBuilder.

An impressive list of products, indeed. But who wants to sacrifice the
productivity of building native Delphi components and learn the inner workings
ActiveX? Fortunately, with Delphi 3, you don’t have to.

The Delphi ActiveX Framework

Delphi 3 introduces the Delphi ActiveX Framework (DAX), which enables you
ActiveX controls from native Delphi components. With the additional help of
the conversion process requires little knowledge of COM and ActiveX.
information that I have covered in the previous three articles will be extremely
understanding the DAX framework.

1 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

Creating an ActiveX control in Delphi involves creating a COM wrapper around
Delphi component. The wrapper is defined as a descendant of TActiveXControl
manages a reference to a Delphi component. The Delphi component
functionality of the ActiveX control. It must be a descendant of TWinControl
window handle is needed to support the communication between the COM wrapper
component.

The wrapper class exposes the functionality of the Delphi component to the
and servers through properties and methods. It is also responsible for
manipulating, and destroying the embedded component. The COM wrapper usually
to events generated by the component by forwarding them to the ActiveX
(the container).

One-Step ActiveX

Still sounds pretty complicated, doesn’t it? Fortunately, Delphi supplies a
Control Wizard that greatly simplifies the process. Let’s use the wizard to
familiar TListBox component into an ActiveX control. First, select File|New
Object Repository, then switch to the ActiveX page, as shown

Figure 1: Starting the ActiveX Control Wizard.

Select the ActiveX Control item and click the OK button to start the ActiveX
Wizard, which is shown in Figure 2. The first step is to select the component
define the functionality of the ActiveX control. The VCL Class Name combo
the components currently registered with Delphi that are descendants of TWinControl
that have not been removed from the list through a call to RegisterNonActiveX
TListBox is on the list, TLabel is not because it descends from TGraphicControl

2 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

Figure 2: The ActiveX Control Wizard.

When you select a component class, the wizard automatically populates the remaining
with suggested values. The second field is used to specify a name for identifying
ActiveX control. The wizard generates a suggested name by dropping the initial
component type and adding an X suffix.

The third field is used to specify the name of the implementation unit, which
the TActiveXControl class descendant that defines the new ActiveX control.
wizard suggests a name based on the component selected.

The fourth field is used to specify the Ac-tiveX library in which the ActiveX
reside. When an ActiveX library that contains ActiveX controls is compiled,
created with the same name as the project. If there is no project open, or if
library project is opened when the wizard is started, the Project Name field
must be filled in with a project name. The wizard suggests a name, once again,
the component name. However, if you plan on adding multiple ActiveX controls
library, you will probably want to change the default name to something more
as I did in Figure 2.

If an ActiveX library project is opened when the wizard is started, the fourth field
and the new ActiveX control will be added to the currently opened project.

ActiveX Control Options

Figure 2 also shows that all of the ActiveX Control Options have been selected.
option specifies that a design-time license should be created for the control,
prevents the control from being used in a design environment unless the
license key for the control. With this option selected, the wizard generates
control and stores it in an LIC file under the same name as the project. The user
a copy of this file in order to use the control in a design

The second option specifies that version information should be added to the
is, the resulting OCX file. Adding version information to your library allows you
information about your library, such as copyright information and version
specify the details, select Project|Options and switch to the Version-Info page
wizard generates the new project. (NOTE: Although version information is
must select this option if you plan on using the new ActiveX control in Visual
required for the control to be registered correctly.)

The final option on the ActiveX Control Wizard specifies that an about box
created for the new control. The about box is a separate form in its own unit;

3 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

the name of the control, copyright information, and an OK button. The about
displayed in design environments via the About property.

Generating the Files

Click on the OK button. If necessary, the wizard first creates an ActiveX library
Next, it creates an implementation unit, which is where the COM wrapper around
Delphi component is defined. The wrapper is simply a descendant of the TActiveXControl
class.

The wizard then creates a type library and a type library interface unit. The type
binary file that defines the data types, interfaces, methods, and object classes
ActiveX library will expose. The type library interface unit contains Object
declarations corresponding to the information stored in the type library.

If necessary, the wizard will also create a license file, an about box form,
unit, and then add them to the project.

Building and Registering the Server

At this point, we can build the ActiveX library project to generate an OCX file
the ActiveX control. We can then register the library by selecting Run|Register
Server. However, before doing that, I recommend saving the project and
source files. Although Delphi allows you to register the library without saving
files to disk, this should be avoided. When an ActiveX library is registered, the
its location is stored in the system registry. If you do not save the project
directory stored in the registry will be the current directory.

Problems arise if you save the ActiveX library project in a directory other
specified in the registry. Specifically, Windows will not be able to load your ActiveX
because it won’t be able to find the library. Or worse, Windows will use an older
the library residing in the old directory. If you accidentally register the ActiveX
can remove the library from the registry by selecting Run|Unregister ActiveX

Once registered, the ListBoxX ActiveX control can be used wherever an ActiveX
can be used. For example, Figure 3 shows the control being used inside Visual

Figure 3: Using a Delphi component in VB.

4 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

(NOTE: If you change the name of the about form file from About1 to something
descriptive, the next time you compile, you will receive a syntax error because
referenced in the implementation unit. Simply update the uses clause and

ActiveX Conversion Issues

Although the ListBoxX control allows us to use the TListBox component in Visual
implementation of ListBoxX is not identical to that of TListBox . For
OnDrawItem event defined in TListBox is not defined in ListBoxX. Recall
OnDrawItem event is how the TListBox component supports owner-drawn items.
this event, the ActiveX version does not support this feature, even though
property is shown in the property inspector.

To understand why the event doesn’t appear in the ActiveX version, we need
the event type. In particular, we need to look at the parameters passed
handlers. The OnDrawItem event is declared using the TDrawItemEvent type,
defined as follows:

TDrawItemEvent = procedure(Control: TWinControl;
 Index: Integer; Rect: TRect;
 State: TOwnerDrawState)of object;

Therefore, OnDrawItem event handlers receive four parameters. The third
prevents this event from appearing in the ActiveX control because OLE Automation
not know how to handle marshalling TRect data.

Let me explain. ActiveX controls are actually tiny OLE Automation servers;
containers that hold ActiveX controls use Automation to communicate with
Therefore, in order for a property, method, or event to appear in the ActiveX
the component, all parameters and return types must be automation-compatible
lists the automation-compatible types.

Although not listed, the ActiveX Control Wizard is able to provide access to
TPicture, and TStrings properties in an ActiveX control. Color properties are
TColor is simply an integer value. However, for the other property types, Delphi
custom interface to handle accessing the corresponding Delphi property. For
IStrings interface provides ActiveX access to TStrings properties.

However, just because a property is automation-compatible does not mean
appear in the ActiveX control. The wizard will not surface properties, methods,
that do not make sense for an ActiveX control. For example, the following properties
converted: Height, HelpContext, Hint, Left, Name, ParentFont, ParentShowHint,

5 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

PopupMenu, ShowHint, TabOrder, Tag, Top, and Width.

In addition, there are two other specific types of properties that the wizard will
an ActiveX control: component references and data-aware properties
references are implemented as pointers and are thus not automation-compatible.
the ActiveX model does not provide a standard way for a control to be aware
controls in the container.

DataSource and DataField properties are not mapped to an ActiveX control because
components implement data-awareness differently from ActiveX controls. What
to create a data-aware ActiveX control? This is certainly possible, but it requires
work, which I’ll cover in my next column. However, I must point out
data-awareness is not the same as Delphi data-awareness. This is why none
native data-aware controls appear in the ActiveX Control Wizard component

Correcting the Conversion

At this point, we have a functional ActiveX control. As you can see from Figure
other list box features are available. We can even change the
lsOwnerDrawFixed , but we cannot alter the items’ appearance without the
event—or can we?

Indeed we can, but we need to use a different approach. That is, we need
automation-compatible interface to the owner-draw capabilities of TListBox
we can create a new event in the ActiveX control called OnColorItem that would
user the ability to change the color of individual items.

Adding a New Event

Adding a new event to an ActiveX control requires modifying the type information
the type library. There are two ways to accomplish this: by selecting the
Interface menu item or by using the built-in type library editor. The Edit|Add
menu item is only enabled when the implementation unit for the ActiveX control
Figure 4 shows the effect of selecting this menu item while the ListBoxImpl unit

Figure 4: Adding a custom event.

6 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

From here, you must select the interface you wish to modify. Select
Properties/Methods interface or the Events interface, depending on the item
add. The distinction between properties/methods and events is necessary
group is controlled by a different interface. That is, the Properties/Methods
defined as a dual interface, while the Events interface is defined as a dispinterface.
you know why I went through the trouble of explaining these concepts in the
issue.

Figure 4 shows how the OnColorItem event is added to the IListBoxXEvents
Defining a new event in an ActiveX interface is a bit different than defining an
Delphi component. Instead of specifying a property with an event type,
TNotifyEvent , you write a procedure heading with the parameters that will
event handler. It is similar to writing an event dispatch method in a component.
OnColorItem event is defined as follows:

procedure OnColorItem(Index: Integer; var Color: TColor);

After the OK button is clicked, Delphi adds the declaration to the type library.
users of the control to write event handlers for the OnColorItem event. However,
only declared the event; we have not implemented the code to generate the
this is very similar to defining new events in a Delphi component. Declaring
property and event dispatch method is only part of the process. We must
event dispatch method at the appropriate time to generate

So, the question now is where do we generate the OnColorItem event? The
realizing that the ActiveX wrapper has access to the embedded Delphi
Therefore, the TListBoxX wrapper class can create custom event handlers
events generated by the embedded Delphi component. The best place to
OnColorItem event is within the component’s OnDrawItem event. Listing 1 shows
listing of the ListBoxImpl unit to illustrate how this is accomplished.

The TListBoxX wrapper class defines an event handler called DrawItemEvent
the OnDrawItem event of the embedded list box. The DrawItemEvent handler
the OnDrawItem event in the InitializeControl method.

The DrawItemEvent handler is responsible for generating the OnColorItem
ActiveX control. To generate an event, the FEvents interface reference is used
the OnColorItem event procedure. The Index parameter comes from the
parameter list, and the Color parameter is declared locally in the DrawItemEvent
OnColorItem event returns, the ItemColor variable will contain either the default
user-defined color. The ItemColor variable is then used in drawing

Figure 5 shows the VB app from Figure 3 running. The code editor in Figure
event handler used to highlight an item in the list. Of course, this is not
having access to the Canvas property of the list box, but it does demonstrate
that flexibility can be surfaced in the ActiveX control.

7 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

Figure 5: Using a custom event.

Attaining True One-Step ActiveX

As you can see from the previous example, it is not always easy to convert
components into ActiveX controls. This is because we converted an existing
component—in particular, a component that used some advanced features
Component Library. In this respect, the ActiveX Control Framework is not as
VCL. However, you must weigh this against the benefit of being able to use ActiveX
in products other than Delphi and C++ Builder.

If your goal is to create an ActiveX control, there are some guidelines that
follow. First, make sure your component descends from TWinControl or
descendants. Graphic controls cannot be embedded within a TActiveXControl
you need to provide custom painting in your component, descend from TCustomControl
instead.

Second, use only automation-compatible types for properties and method parameters.
will enable the ActiveX Control Wizard to convert your component’s properties,
also force you to redesign the interface to your components.

Third, the Delphi component should be considered the source code for the ActiveX
Therefore, it is better to modify the Delphi component and reconvert it into
control rather than modifying the ActiveX control’s implementation unit. Of
unavoidable if you don’t have the source for the Delphi component.

In summary, one-step ActiveX is indeed attainable if you follow these guidelines.

On the Drawing Board

Next time, we will continue discussing the process of converting Delphi components
ActiveX controls. In particular, we will cover advanced features such as
browsing, property pages, streaming, and deployment. v

Copyright © 1998 The Coriolis Group, Inc. All rights reserved.

Listing 1 - ListBoxImpl.src

unit ListBoxImpl;

8 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

interface

uses
 Windows, ActiveX, Classes, Controls, Graphics, Menus, Forms,
 StdCtrls, ComServ, StdVCL, AXCtrls, DelphiByDesignXLib_TLB;

type
 TListBoxX = class(TActiveXControl, IListBoxX)
 private
 { Private declarations }
 FDelphiControl: TListBox;
 FEvents: IListBoxXEvents;
 procedure ClickEvent(Sender: TObject);
 procedure DblClickEvent(Sender: TObject);
 procedure KeyPressEvent(Sender: TObject; var Key: Char);

 // Add a custom event handler for the OnDrawItem event
 procedure DrawItemEvent(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
 protected
 { Protected declarations }
 procedure InitializeControl; override;
 procedure EventSinkChanged(const EventSink: IUnknown); override;
 procedure DefinePropertyPages(
 DefinePropertyPage: TDefinePropertyPage); override;
 function Get_BorderStyle: TxBorderStyle; safecall;
 function Get_Color: TColor; safecall;
 function Get_Columns: Integer; safecall;
 function Get_Ctl3D: WordBool; safecall;
 function Get_Cursor: Smallint; safecall;
 function Get_DragCursor: Smallint; safecall;
 function Get_DragMode: TxDragMode; safecall;
 function Get_Enabled: WordBool; safecall;
 function Get_ExtendedSelect: WordBool; safecall;
 function Get_Font: Font; safecall;
 function Get_ImeMode: TxImeMode; safecall;
 function Get_ImeName: WideString; safecall;
 function Get_IntegralHeight: WordBool; safecall;
 function Get_ItemHeight: Integer; safecall;
 function Get_ItemIndex: Integer; safecall;
 function Get_Items: IStrings; safecall;
 function Get_MultiSelect: WordBool; safecall;
 function Get_ParentColor: WordBool; safecall;
 function Get_ParentCtl3D: WordBool; safecall;
 function Get_SelCount: Integer; safecall;
 function Get_Sorted: WordBool; safecall;
 function Get_Style: TxListBoxStyle; safecall;
 function Get_TabWidth: Integer; safecall;
 function Get_TopIndex: Integer; safecall;
 function Get_Visible: WordBool; safecall;
 procedure AboutBox; safecall;
 procedure Clear; safecall;
 procedure Set_BorderStyle(Value: TxBorderStyle); safecall;
 procedure Set_Color(Value: TColor); safecall;
 procedure Set_Columns(Value: Integer); safecall;
 procedure Set_Ctl3D(Value: WordBool); safecall;
 procedure Set_Cursor(Value: Smallint); safecall;
 procedure Set_DragCursor(Value: Smallint); safecall;
 procedure Set_DragMode(Value: TxDragMode); safecall;
 procedure Set_Enabled(Value: WordBool); safecall;
 procedure Set_ExtendedSelect(Value: WordBool); safecall;
 procedure Set_Font(const Value: Font); safecall;

9 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

 procedure Set_ImeMode(Value: TxImeMode); safecall;
 procedure Set_ImeName(const Value: WideString); safecall;
 procedure Set_IntegralHeight(Value: WordBool); safecall;
 procedure Set_ItemHeight(Value: Integer); safecall;
 procedure Set_ItemIndex(Value: Integer); safecall;
 procedure Set_Items(const Value: IStrings); safecall;
 procedure Set_MultiSelect(Value: WordBool); safecall;
 procedure Set_ParentColor(Value: WordBool); safecall;
 procedure Set_ParentCtl3D(Value: WordBool); safecall;
 procedure Set_Sorted(Value: WordBool); safecall;
 procedure Set_Style(Value: TxListBoxStyle); safecall;
 procedure Set_TabWidth(Value: Integer); safecall;
 procedure Set_TopIndex(Value: Integer); safecall;
 procedure Set_Visible(Value: WordBool); safecall;
 end;

implementation

uses AboutListBox;

{ TListBoxX }

procedure TListBoxX.InitializeControl;
begin
 FDelphiControl := Control as TListBox;
 FDelphiControl.OnClick := ClickEvent;
 FDelphiControl.OnDblClick := DblClickEvent;
 FDelphiControl.OnKeyPress := KeyPressEvent;

 // Add a custom event handler for the OnDrawItem event
 FDelphiControl.OnDrawItem := DrawItemEvent;
end;

procedure TListBoxX.EventSinkChanged(const EventSink: IUnknown);
begin
 FEvents := EventSink as IListBoxXEvents;
end;

function TListBoxX.Get_Enabled: WordBool;
begin
 Result := FDelphiControl.Enabled;
end;

// Other Get_ Methods

procedure TListBoxX.Set_Enabled(Value: WordBool);
begin
 FDelphiControl.Enabled := Value;
end;

// Other Set_ Methods

procedure TListBoxX.DrawItemEvent(Control: TWinControl;
 Index: Integer; Rect: TRect; State: TOwnerDrawState);
var
 ItemColor: TColor;
begin
 ItemColor := FDelphiControl.Font.Color;

 // Generate the OnColorItem ActiveX event

10 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

 if FEvents <> nil then
 FEvents.OnColorItem(Index, ItemColor);

 // Draw the item using the ItemColor
 with FDelphiControl do
 begin
 if not (odSelected in State) then
 Canvas.Font.Color := ItemColor;

 Canvas.TextRect(Rect, Rect.Left + 2, Rect.Top, Items[Index]);
 Canvas.Font.Color := FDelphiControl.Font.Color;
 end;
end;

initialization
 TActiveXControlFactory.Create(
 ComServer,
 TListBoxX,
 TListBox,
 Class_ListBoxX,
 1,
 '{B19A64E4-644D-11D1-AE4B-444553540000}',
 0);
end.

11 von 11 10.3.2000 22:39

Delphi By Design - One-Step ActiveX http://www.raize.com/DelphiByDesign/DbD48.htm

